1 A.6 Western Burrowing Owl (Athene cunicularia)

2 A.6.1 Legal Status

- 3 The western burrowing owl (*Athene cunicularia*) is designated as a state Bird Species of Special
- 4 Concern (Shuford and Gardali 2008) by the California Department of Fish and Game (DFG).
- 5 Nest sites are protected in California under Fish and Game Code Sections 3503.5, 3505, and
- 6 3800.

10

- 7 The burrowing owl has no federal regulatory status; however, the species is protected under the
- 8 federal Migratory Bird Treaty Act and is designated as a Bird of Conservation Concern by the
- 9 U.S. Fish and Wildlife Service (USFWS 2002).

A.6.2 Species Distribution and Status

11 Range and Status

- 12 There are two subspecies of burrowing owls in North America (Dechant et al. 2003). The
- breeding range of A. cunicularia floridana is restricted to Florida and adjacent islands. The
- breeding range of *Athene cunicularia hypugaea* extends south from southern Canada throughout
- most of the western half of the United States and south to central Mexico. The winter range is
- similar to the breeding range except that most owls from the northern areas of the Great Plains
- and Great Basin migrate south and southern populations are resident year round (Haug et al.
- 18 1993).
- Burrowing owls were once widespread and generally common over western North America, in
- treeless, well-drained grasslands, steppes, deserts, prairies, and agricultural lands (Haug et al.
- 21 1993). The owl's range has contracted in recent decades, and populations have been generally
- 22 diminished in some areas.
- 23 In California, burrowing owls are widely distributed in suitable habitat throughout the lowland
- portions of the state (Figure A.6.1); however, occupied sites have ranged from 200 feet below
- 25 sea level at Death Valley, to above 12,000 feet at Dana Plateau in Yosemite (DFG 2000). In
- southern California, the species is fairly common along the Colorado River Valley (Rosenberg et
- 27 al. 1991) and in the agricultural region of the Imperial Valley. Only small, scattered populations
- are thought to occur in the Great Basin and the desert regions of southern California (DeSante et
- 29 al. 1997). Burrowing owl breeding populations have greatly declined along the California coast,
- including the southern coast to Los Angeles, where these owls have been eliminated from
- 31 virtually all private land, and occur only in small populations on some federal lands (Trulio
- 32 1997, Garrett and Dunn 1981). Breeding populations in Central California include the southern
- 33 San Francisco Bay between Alameda and Redwood City, the interior valleys and hills in the
- Livermore area, and the Central Valley (DeSante et al. 1997). While the northeastern and
- astern populations are migratory, the Central and Southern California populations are generally
- 36 considered predominantly non-migratory (Haug et al. 1993).
- 37 Overall population trend throughout the subspecies' North American range is reportedly
- declining. James (1993) reports that 54 percent of the areas sampled reported declining
- burrowing owl populations. Breeding Bird Surveys conducted between 1980 and 1989 also
- 40 report significant declines in many areas (Haug et al. 1993).

Figure A.6.1. Western Burrowing Owl Statewide Range and Recorded Occurrences

- 1 Burrowing owl was formerly common or abundant throughout much of California, but
- 2 noticeable declines have been reported since the 1940s (Grinnell and Miller 1944) and continue
- 3 to the present time (DeSante and Ruhlen 1995, DeSante et al. 1997). The decline has been
- 4 almost universal throughout California. Conversion of grasslands and pasturelands to
- 5 incompatible crop types and the destruction of ground squirrel colonies have been the main
- 6 factors causing the decline of the burrowing owl population (Zarn 1974). Assimilation of
- 7 poisons applied to ground squirrel colonies also affects borrowing population levels.
- 8 Surveys in California in 1986-91 found population decreases of 23 to 52 percent in the number
- 9 of breeding groups and 12 to 27 percent in the number of breeding pairs of owls (DeSante et al.
- 10 1997). Nearly 60 percent of burrowing owl colonies that existed in the 1980s reportedly
- disappeared by the early 1990s (DeSante and Ruhlen 1995, DeSante et al. 1997).
- DeSante et al. (1997) estimated a statewide population of 9,266 breeding pairs, most occurring
- four main population areas, the Imperial Valley, the Central Valley, the Southern California
- 14 coast, and the San Francisco Bay Area. An estimated 167 nesting pairs (1.8 percent of
- 15 California's population) remain in the Bay Area, where the species is commensal with the
- 16 California ground squirrel (Spermophilus beecheyi) and resides in undeveloped grassland
- 17 remnants amid a rapidly expanding human population. In the southern California coastal
- population, burrowing owls have been almost entirely extirpated from private lands and are now
- 19 found only on a few undeveloped federal lands, where an estimated 260 nesting pairs (3 percent
- of California's population) persist. An estimated 2,224 nesting pairs exist in the Central Valley
- 21 (24 percent of California's population), where the species is also subject to widespread habitat
- loss from urbanization. The species is also commensal with the California ground squirrel and
- resides in remaining patches of grassland, along the grassland edges of canals and levees, and
- 24 along the edges of pastures and some agricultural fields. Burrowing owls are mostly commensal
- with the round-tailed ground squirrel (*Spermophilus tereticaudus*) in the Imperial Valley, where
- burrowing owls are almost completely relegated to irrigation canal banks and where an estimated
- 27 6,570 nesting pairs (71 percent of California's population) remain (all data from DeSante et al.
- 28 1997, presented also in Barclay et al. 1998).
- 29 Although California has a significant burrowing owl population, development pressures and
- recent population trends suggest that the species may continue to be extirpated from large
- 31 portions of its range in California during the next decade. Coastal areas, in particular, have
- 32 experienced extirpations or near extirpations in recent years presumably from habitat loss. While
- burrowing owls in the Central Valley have exhibited strong site fidelity even with increasing
- habitat fragmentation, many active areas have been locally extirpated due to increasing
- 35 urbanization and related causes.

36

Distribution and Status in the Planning Area

- Within the BDCP Planning Area, burrowing owls are concentrated mostly in the pastureland
- areas west of the Sacramento Deep Water Ship Channel in Yolo and Solano counties, and in the
- 39 grassland habitats along the western edge of the BDCP Planning Area between roughly
- 40 Brentwood/Antioch and Tracy (Figure A.6.2). These mostly uncultivated areas support larger
- 41 and more stable populations of California ground squirrels and are less likely to be disturbed by
- 42 regular cultivation and other ground disturbances.

DRAFT

Figure A.6.2. Western Burrowing Owl Habitat Model and Recorded Occurrences

- 1 Burrowing owls continue to persist locally in the vicinity of Stockton where they are typically
- 2 found along levees, canals, field edges, and some ruderal habitats or idle fields. Burrowing owls
- 3 are also known to occur in the grassland habitats in the vicinity of Stone Lakes. While relatively
- 4 few burrowing owls occur in this area, the grassland habitats could potentially support a larger
- 5 population. In recognition of this, enhancement of burrowing owl habitat, including the
- 6 installation of 80 artificial nest boxes, reintroduction of the California ground squirrel, and
- 7 adjustment of land management activities, is ongoing on the Stone Lakes National Wildlife
- 8 Refuge. These activities are part of an agreement with the Sacramento Area Flood Control
- 9 Agency and Sacramento County to use the refuge for purposes of burrowing owl mitigation
- 10 because of impacts from the South Sacramento Streams Group Project (SAFCA, Resolution
- 11 Number 07058).
- 12 Few burrowing owls occur in the central portion of the Delta and the northern Delta east of the
- 13 Sacramento Deep Water Ship Channel (Figure A.6.2) due mainly to regular cultivation, lack of
- undisturbed habitats, and lack of ground squirrel populations. Active sites in this area are
- 15 generally restricted to levee embankments and along irrigation canals.
- Remaining populations in the vicinity of Stockton, Brentwood/Antioch, and Tracy are subject to
- 17 continued land use changes from urbanization and populations are likely to decline over time as
- suitable habitat is removed. Populations in Yolo and Solano Counties west of the Deep Water
- 19 Ship Channel are less subject to land use changes and thus are more likely to persist.

20 A.6.3 Habitat Requirements and Special Conditions

- Burrowing owls are found in open, dry grasslands, agricultural and range lands, and desert
- 22 habitats often associated with burrowing animals (Klute et al. 2003). They also occupy golf
- courses, airports, road and levee embankments, and other disturbed sites where there is sufficient
- 24 friable soil for burrows (Haug et al. 1993). Because they typically use the burrows created by
- other species, particularly the California ground squirrel, presence of these species is usually a
- 26 key indicator of potential occurrence of burrowing owl.
- Nesting. In northern California, most nest sites occur in abandoned ground squirrel burrows;
- 28 however, other mammal burrows and various artificial sites, such as culverts, pipes, rock piles,
- and artificially-constructed burrows are also used. Burrowing owls generally select sites in
- 30 relatively sandy habitats that allow for modification of burrows and maximize drainage. In
- addition to providing nesting, roosting, and escape burrows, ground squirrels improve habitats
- for burrowing owls in other ways. Burrowing owls favor areas with short, sparse vegetation
- 33 (Coulombe 1971, Haug and Oliphant 1990, Plumpton and Lutz 1993b) to facilitate viewing and
- hunting, which is typical around active sciurid colonies. Additionally, burrowing owls may
- 35 select areas with a high density of burrows (Plumpton and Lutz 1993b). Typical habitats are
- treeless, with minimal shrub cover and woody plant encroachment, and have low vertical density
- of vegetation and low foliage height diversity (Plumpton and Lutz 1993b). While occupied
- burrows are sometimes found in flat landscapes often in elevated mounds created by burrowing
- 39 activity, they are also commonly found on hillsides, levee slopes, or other vertical cuts, probably
- 40 to facilitate drainage and maximize visibility. Nest sites are also often associated with nearby
- 41 perches, including stand pipes, fences, or other low structures.
- 42 Optimal nesting locations are within an open landscape with level to gently sloping topography,
- 43 sparse or low grassland or pasture cover, and a high density of burrows.

- 1 Burrowing owls are tolerant of human-altered open spaces, such as areas surrounding airports,
- 2 golf courses, and military lands where burrows are readily adopted (Thomsen 1971). Burrowing
- 3 owls may select areas adjacent to unimproved and improved roads (Brenckle 1936, Ratcliff
- 4 1986); a modest volume of vehicle traffic does not appear to significantly affect behaviors or
- 5 reproductive success (Plumpton and Lutz 1993c). In the South San Francisco Bay region and in
- 6 the Sacramento area, burrowing owls nest and winter in highly human-affected environments
- 7 and can adjust to most types of human activity if habitats remain in a suitable condition.
- 8 The dimensions of the nest burrow vary with location, age of burrow, and the species that
- 9 originally excavated it. Typical burrows constructed by ground squirrels are from 3 to 6 inches
- in diameter and extend underground at a gradual downward slope from 3 to 10 feet with an
- enlarged cavity at the end of the burrow. Burrow entrances are often adorned with various
- objects as well as feathers and pellets. The burrow is often lined with grass or other material
- 13 (Haug et al. 1993).
- Burrowing owls are solitary nesters or may nest in loose colonies usually from 4 to 10 pairs
- 15 (Zarn 1974); however, larger colonies have been documented. Most pairs occupy a natal burrow
- and at least one additional satellite burrow.
- As semi-colonial raptors, colony size is indicative of habitat quality. Colony size is also
- positively correlated with annual site reuse by breeding burrowing owls; larger colonies (those
- with more than five nesting pairs) are more likely to persist over time, than colonies containing
- 20 fewer pairs or single nesting pairs (DeSante et al. 1997). Nest burrow reuse by burrowing owls
- 21 has been well documented (Martin 1973, Gleason 1978, Rich 1984, Plumpton and Lutz 1993b,
- Lutz and Plumpton 1999). Former nest sites may be more important to continued reproductive
- success than are mates from previous nest attempts (Plumpton and Lutz 1994). Past reproductive
- success may influence future site re-occupancy by burrowing owls. Female burrowing owls with
- 25 large broods tend to return to previously occupied nest sites; while females that fail to breed or
- produced small broods, may change nest territories in subsequent years (Lutz and Plumpton
- 27 1999).
- 28 In general, burrowing owls show a high degree of nest site fidelity and reuse the same nesting
- burrows and satellite burrows for many years if left undisturbed.
- Foraging. Burrowing owls forage in open grasslands, pasturelands, agricultural fields and field
- 31 edges, fallow fields, along the edges of roads and levees. Vegetation is low to maximize
- 32 visibility and access. Short perches, such as fence posts are often used to enhance visibility.
- While they will defend the immediate vicinity of the nest, burrowing owls will often forage in
- common areas (Haug et al. 1993).

A.6.4 Life History

- 36 **Description.** This small owl stands about 9 inches tall. The sexes are similar (although females
- are slightly larger and often slightly darker than males) with distinct oval facial ruff, white
- 38 eyebrows, yellow eyes, and long stilt-like legs. Wings are relatively long (20 to 24 inches) and
- 39 somewhat rounded. The owl is sandy colored with pale white spots on the head, back, and
- 40 upperparts of the wings and white-to-cream with barring on the breast and belly (Haug et al.
- 41 1993).

35

- 42 **Seasonal Patterns.** Burrowing owls are resident in northern California. The breeding season
- 43 (defined as from pair bonding to fledging) generally occurs from February to August with peak
- activity occurring from April through July (Haug et al. 1993). Pairs may be resident at breeding

- sites throughout the year or migrate out of the breeding area during the non-nesting season.
- 2 Some individual birds only winter in the region. Thus, the demographics of this species in the
- 3 region are relatively dynamic. Burrowing owls have a strong affinity for previously occupied
- 4 nesting and wintering habitats. They often return to burrows used in previous years, especially if
- 5 they had been reproductively successful (Lutz and Plumpton 1999). Additionally, burrowing
- 6 owls often return as breeding adults to the general area in which they were born. For these
- 7 reasons, efforts that enhance productivity help to ensure continued use of burrows and territories.
- 8 Migration patterns vary among burrowing owls. As noted above, in northern California
- 9 burrowing owls are generally year-round residents although some may migrate from or migrate
- 10 to other regions during winter. Those burrowing owls that do migrate often return to the same
- 11 nesting territories in successive years.
- 12 **Reproduction.** Adults begin pair bonding and courtship in February through March. Following
- pair formation, a nest is established in the natal burrow and females lay a clutch of 6 to 11 eggs.
- 14 Average clutch size is 7 to 9 eggs. Eggs are incubated entirely by female for a period of between
- 15 28 and 30 days. During this time, the female is provisioned with food by the male. Following
- hatching, the young remain in the natal burrow for 2 to 4 weeks after which they begin to emerge
- 17 from the burrow and roost at the burrow entrance. The female begins hunting as young become
- less dependent. Adults also often relocate chicks to satellite burrows presumably to reduce the
- risk of predation (Desmond and Savidge 1998) and possibly to avoid nest parasites (Dechant et
- al. 2003). After approximately 44 days, young leave the natal burrow and by 49 to 56 days begin
- 21 to hunt live insects. On average, three to five young fledge, but fledging rates can range from a
- single chick to as many as eight or nine (Lutz and Plumpton 1999). During this time, the
- 23 juveniles expand their range and may find cover in the satellite burrow. The juveniles continue
- 24 to be provisioned by the adults until mid-September when they molt into adult plumage and
- begin to disperse (Landry 1979). King and Belthoff (2001) report that dispersing young use
- satellite burrows in the vicinity of their natal burrows for about two months after hatching before
- 27 departing the natal area.
- 28 Home Range/Territory Size. Few valid measures of territory or home range size of burrowing
- 29 owls have been published; home range has not often been measured directly (e.g., via telemetry
- studies), and is highly subject to observer bias or equipment effect. Accordingly, caution is
- 31 warranted when interpreting home range estimates. Gervais et al. (unpublished 2000 report in:
- 32 Yolo Natural Heritage Program 2008) estimated that the mean minimum convex polygon (MCP)
- home range estimates for 22 burrowing owls in Fresno and Kings Counties, California was 467
- acres. Haug and Oliphant (1990) estimated that the mean MCP for six owls in Saskatchewan
- was 595 acres. (Yolo Natural Heritage Program 2008)
- 36 In Colorado, Plumpton and Lutz (D. Plumpton pers. comm. in Yolo Natural Heritage Program
- 37 2008) recorded densities of nesting burrowing owls that ranged from 21 to 34 pairs on roughly
- 38 2,240 acres of available habitat (i.e., 106 and 65 acres/pair, respectively). Thomsen (1971)
- 39 estimated territory size based on nearest-neighbor distances between nest burrows, producing a
- result of six pairs of owls averaging 2 acres, with a range of between 0.1 to 4.0 acres. The
- 41 preceding values demonstrate the disparity among studies, the different values attained when
- 42 using different methods of estimating abundance, and the risk in relying on the results of a single
- 43 study. (Yolo Natural Heritage Program 2008)
- 44 **Foraging Behavior and Diet.** Burrowing owls are active day and night and will hunt
- 45 throughout the 24-hour day, but are mainly crepuscular, hunting mostly at dusk and dawn, and

- are less active in the peak of the day. They tend to hunt insects in daylight and small mammals
- 2 at night. They usually hunt by walking, running, hopping along the ground, flying from a perch,
- 3 hovering, and fly-catching in mid air.
- 4 Burrowing owls tend to be opportunistic feeders. Large arthropods, mainly beetles and
- 5 grasshoppers, comprise a large portion of their diet. In addition, small mammals, especially mice
- 6 and voles (*Microtus, Peromyscus*, and *Mus* spp.) are also important food items. Other prey
- 7 animals include reptiles and amphibians, young cottontail rabbits, bats, and birds, such as
- 8 sparrows and horned larks. Consumption of insects increases during the breeding season (Zarn
- 9 1974, Tyler 1983, Thompson and Anderson 1988, John and Romanow 1993, Green et al. 1993,
- 10 Plumpton and Lutz 1993a). Productivity may increase in proportion to the amount of mice and
- voles in the diet (D. Plumpton, unpublished data in Yolo Natural Heritage Program 2008).
- 12 As with most raptors, burrowing owls select foraging areas based on prey availability as well as
- prey abundance. Prey availability (the ability of a raptor to detect prey) decreases with
- increasing vegetative cover and thus foraging habitat suitability decreases with increasing grass
- 15 height or vegetative density.

A.6.5 Threats and Stressors

- 17 **Urbanization/Fragmentation.** Urbanization, including residential and commercial
- development and infrastructure development (roads and oil, water, gas, and electrical
- 19 conveyance facilities) is one of the principal causes of habitat loss for burrowing owls and is a
- 20 continuing threat to remaining northern California populations. Urbanization permanently
- 21 removes habitat and has led to permanent abandonment of many burrowing owl colonies in the
- developing portions of the Central Valley, Bay Area, and throughout the state.
- 23 Interestingly, while urbanization is considered a key cause for population declines, burrowing
- owls are known to exhibit strong site fidelity. They have shown a relatively high level of
- 25 tolerance for human encroachment, degradation of native habitats, and fragmentation of habitats
- 26 (Schultz 1993, Trulio 1997). Active breeding colonies have been reported in small parcels or
- 27 narrow strips of disturbed habitat along levees or utility corridors and surrounded by urban
- development. Colonies have also been reported along the edges of airport runways, around the
- 29 perimeter fences of prisons, and in other urbanized or highly disturbed habitats (Thomsen 1971).
- 30 Disturbances may depress reproductive potential in urban settings as compared with more
- 31 natural habitats (Thomsen 1971). However, owls will often continue to occupy traditional sites
- 32 as long as essential habitat elements remain present, until the disturbances force the owls out, or
- 33 until the extent of available habitat is reduced below habitat requirements (Millsap and Bear
- 34 1988).

16

- 35 **Agricultural Crop Conversion.** Some burrowing owls nest on the edges of agricultural areas
- and forage in suitable agricultural fields, such as recently harvested fields, alfalfa and other hay
- 37 fields, irrigated pastures, and fallow fields. The conversion of these fields to incompatible crop
- types, such as orchards, vineyards, and other crops that are not conducive to burrowing owl
- 39 foraging, reduce available foraging habitat and lead to abandonment of traditional nesting areas.
- 40 Levee Maintenance. Many burrowing owl nests are known to occur along the outside slope or
- at the toe of levees. Levee stability practices for flood control, including vegetation removal,
- 42 grading, and reinforcing with rock can destroy burrowing owl nesting habitat.

- 1 Rodent Control. Rodent control, particularly along levees and roadsides can decimate ground
- 2 squirrel populations and ultimately reduce available nesting and cover habitat for burrowing
- 3 owls.

23

- 4 **Other Human Disturbances.** Although burrowing owls are relatively tolerant of lower levels
- of human activity, human-related impacts such as shooting and burrow destruction adversely
- 6 affect this species (Zarn 1974, Haug et al. 1993). Artificially enhanced populations of native
- 7 predators (e.g., gray foxes, coyotes) and introduced predators (e.g., red foxes, cats, dogs) near
- 8 burrowing owl colonies can also be a significant local problem. Burrowing owls also get tangled
- 9 in loose fences, abandoned wire, fishing line, rat traps, and other materials.
- 10 The overall effect of population-level threats (e.g., habitat conversion or ground squirrel
- eradication) is of much greater concern than sources of individual mortality (e.g., shooting or
- vehicle collisions), as these former forces operate at a population, regional, and/or range-wide
- 13 level. As obligate burrow nesters that do not excavate their own burrows, burrowing owls are
- largely dependent on burrowing mammals that have no legal status or protection, and are
- 15 commonly and purposefully eradicated by humans. Whereas, individual mortality cumulatively
- represents a significant number of individuals, a population that is secure and productive can
- offset these losses. Conversely, populations that are failing because of population-level effects
- cannot be sustained even in absence of direct sources of individual mortality. In California,
- significant economic development pressures exist, and habitat conversion for human purposes
- 20 continues to degrade the abundance and quality of owl nesting habitat (Barclay et al. 1998). Few
- 21 provisions exist to protect habitats over time. As a result, burrowing owls appear to be declining
- 22 throughout most of California.

A.6.6 Relevant Conservation Efforts

- 24 Few conservation efforts have been undertaken to conserve burrowing owl populations. The
- 25 lack of state or federal listing, and the rejection of recent efforts to list the species at the state and
- 26 federal levels, limits the extent of regulatory influence. There remain several significant data
- 27 gaps regarding population status and trends, migration, dispersal from nesting sites, and other
- aspects of annual movements.
- 29 Protection typically occurs at the local project level through implementation of the guidelines
- 30 prepared by DFG (1994). While the guidelines address protection of active sites and
- 31 compensation for impacts, they do not address conservation or protection at a regional level.
- Regional conservation efforts have focused on the development and implementation of habitat
- 33 conservation plans/natural community conservation plans. These regional conservation
- 34 approaches can be an effective tool to manage and sustain burrowing owl populations if they
- 35 protect sufficient suitable and occupied habitat. The majority of the BDCP Planning Area
- overlaps with other conservation planning efforts that are either currently being implemented
- 37 (e.g., Contra Costa HCP/NCCP, San Joaquin County HCP) or are in development (e.g., Yolo
- 38 County HCP/NCCP, Solano County HCP, South Sacramento County HCP). If effectively
- 39 coordinated, these efforts can be an effective tool in managing burrowing owl populations in the
- 40 region. However, to date there has been limited coordination between these otherwise
- 41 complimentary conservation planning efforts with respect to managing covered species.

4

5

6 7

8

9

11

12

14

15

16 17

18 19

20

21 22

23

2425

26

2728

29

30

31

32

1 A.6.7 Species Habitat Suitability Model

- Nesting and Foraging: High value nesting and foraging habitat for the western burrowing owl (Figure A.6.2) includes the following grassland land cover types:
 - California annual grasslands (California Annual Grassland/Herbaceous Alliance)
 - Ruderal herbaceous grasses and forbs (*Cynodon dactlyon* Alliance and Ruderal Herbaceous [nonnative annual forbland)
 - Bromus diandrus Bromus hordeaceus
 - Italian rye-grass (*Lolium multiflorum* Alliance)
 - Lolium multiflorum Convolvulus arvensis
- 10 Moderate value nesting and foraging habitat includes the following:
 - Native and irrigated pasture types.
 - Levee slopes in managed and natural seasonal wetlands
- 13 Low value nesting and foraging habitat includes the following:
 - Interior grassy slopes of levees surrounding Central Delta Islands.
 - Managed Seasonal Wetlands (when not flooded)
 - o Temporarily flooded grasslands
 - Rabbitsfoot grass
 - o Intermittently flooded perennial forbs
 - o Managed annual wetland vegetation (non-specific grasses and forbs)
 - Shallow flooding with minimal vegetation
 - Seasonally flooded undifferentiated annual grasses and forbs
 - Managed akali wetland
 - o Intermittently or temporarily flooded undifferentiated annual grasses and forbs
 - Natural Seasonal Wetlands (when not flooded)
 - o Saltgrass (Distichlis spicata)
 - o Distichlis spicata annual grasses
 - Seasonally flooded annual grasslands
 - Vernal Pools
 - o Temporarily flooded perennial forbs
 - Agriculture
 - o Irrigated cropland (roadsides and levees as potential nesting sites and fields for seasonal foraging).
- Assumptions: Western burrowing owls require habitat with three attributes: open, well-drained
- terrain; short, sparse vegetation; and underground burrows or burrow facsimiles (Klute et al.
- 35 2003). In Northern California, most nest sites occur in abandoned ground squirrel burrows;
- 36 however, other mammal burrows and various artificial sites, such as culverts, pipes, and rock
- piles are also used (Haug et al. 1993). Optimal nesting locations are within an open landscape
- with level to gently sloping topography, sparse or low grassland or pasture cover, and a high
- 39 density of burrows. However, nest locations also include disturbed habitats within this
- 40 landscape, including roadside berms, levee slopes, and debris piles.
- Western burrowing owls occur primarily in open grassland habitats where vegetation is low to
- 42 maximize visibility and access. Moderate value foraging and nesting habitat includes native and
- 43 irrigated pasture types that maintain a relatively constant vegetation structure and berms, road

- edges, and fence rows around the perimeter of fields; and levee slopes in managed and natural
- 2 seasonal wetland types. Low value nesting and foraging habitat includes seasonal wetland types
- 3 that are dry during the breeding season and types (e.g., irrigated crops) that exhibit periodic or
- 4 seasonal foraging value due to management activities and changes in vegetation structure. A
- 5 variety of irrigated crop types may be used; however, use is generally associated with low
- 6 vegetative structure and thus occurs primarily during pre-planting or post-harvesting seasons.
- 7 Because most irrigated crop types are rotated seasonally or annually, the distribution of suitable
- 8 types will also vary seasonally and annually. Thus, this model overestimates the extent of these
- 9 lower value agricultural foraging habitats in any given year.

10 A.6.8 Recovery Goals

- A recovery plan has not been prepared for this species and no recovery goals have been
- 12 established.

13 Literature Cited

- Barclay, J., C. Bean, D. Plumpton, B. Walton. 1998. Burrowing Owls in California: issues and
- challenges. Second International Burrowing Owl Symposium (poster abstract).
- Brenckle, J.F. 1936. The migration of the Western Burrowing Owl. Bird-Banding 7:166-168.
- 17 Coulombe, H.N. 1971. Behavior and population ecology of the Burrowing Owl, *Speotyto*
- cunicularia, in the Imperial Valley of California. Condor 73:162-176.
- 19 Dechant, J.A., M.L. Sondreal, D.H. Johnson, L.D. Igl, C.M. Goldade, P.A. Rabie, B.R. Euliss.
- 20 2003. Effects of management practices on grassland birds: Burrowing Owl. Northern
- 21 Prairie Wildlife Research Center, Jamestown, ND. Northern Prairie Wildlife Research
- 22 Center Online. http://www.npwrc.usgs.gov/resource/literatr/grasbird/buow/buow.htm
- DeSante, D.F., E.D. Ruhlen. 1995 A census of Burrowing Owls in California, 1991-1993.
- Institute for Bird Populations, Point Reyes Station, CA.
- 25 DeSante, D.F., E.D. Ruhlen, S.L. Adamany, K.M. Burton, S. Amin. 1997. A census of
- Burrowing Owls in central California in 1991. Journal of Raptor Research Report 9:38-
- 27 48.
- Desmond, M.J., J.A. Savidge. 1998. Burrowing Owl conservation in the Great Plains. Page 9 in
- Abstracts of the Second International Burrowing Owl Symposium, Ogden, Utah.
- 30 DFG (California Department of Fish and Game). 1994. Staff report on burrowing owl mitigation.
- 31 Sacramento, CA.
- 32 DFG (California Department of Fish and Game). 2000. The status of rare, threatened, and
- endangered animals and plants in California, 2000. Sacramento, CA.
- Garrett K., J. Dunn. 1981. Birds of Southern California. Los Angeles Audubon Society, Los
- 35 Angeles, CA. 408 p.

- Gleason, R.S. 1978. Aspects of the breeding biology of Burrowing Owls in southeastern Idaho.
- 2 Master's. Thesis, University of Idaho, Moscow.
- Green, G.A., R.E. Fitzner, R.G. Anthony, L.E. Rogers. 1993. Comparative diets of Burrowing Owls in Oregon and Washington. Northwest Science. 67: 88-93.
- Grinnell, J., A.H. Miller. 1944. The distribution of the birds of California. Museum of Vertebrate
 Zoology, University of California, Berkeley.
- Haug, E.A., B.A. Millsap, M.S. Martell. 1993. Burrowing Owl (*Speotyto cunicularia*). In: The Birds of North America, No. 61 (A. Poole and F. Gill [eds.]). Philadelphia: The Academy of Natural Sciences; Washington D.C.: The American Ornithologist's Union.
- Haug, E.A., L.W. Oliphant. 1990. Movements, activity patterns, and habitat use of Burrowing Owls in Saskatchewan. Journal of Wildlife Management. 54: 27-35.
- James, P.C. 1993. The status of the burrowing owl in North America. Journal of Raptor Research. 27(1): 89.
- John, R.D., J. Romanow. 1993. Feeding behaviour of a Burrowing Owl, *Athene cunicularia*, in Ontario. Canadian Field-Naturalist. 107: 231-232.
- King, R.A., J.R. Belthoff. 2001. Post-fledging dispersal of Burrowing Owls in southwestern
 Idaho: characterization of movements and use of satellite burrows. Condor. 103:118-126.
- 18 Klute, D.S., L.W. Ayers, M.T. Green, W.H. Howe, S.L. Jones, J.A. Shaffer, S.R. Sheffield, T.S.
- 2003. Status assessment and conservation plan for the Western Burrowing
- 20 Owl in the United States, U.S. Fish and Wildlife Service, Technical Publication
- FWS/BTP-R6001-2003, Washington, D.C.
- Landry, R.E. 1979. Growth and development of the Burrowing Owl. M.S. thesis, California State
 University, Long Beach, CA.
- Lutz, R.S., D.L. Plumpton. 1999. Philopatry and nest site reuse by Burrowing Owls: implications for productivity. Journal of Raptor Research. 33: 149-153.
- Martin, D.J. 1973. Selected aspects of Burrowing Owl ecology and behavior. Condor. 75: 446-456.
- Millsap, B.A., C. Bear. 1988. Cape Coral Burrowing Owl population monitoring. Annual performance report. Florida Game, Freshwater Fish Commission, Tallahassee, FL.
- Plumpton, D.L., R.S. Lutz. 1993a. Prey selection and food habits of Burrowing Owls in Colorado. Great Basin Naturalist 53:299-304.
- Plumpton, D.L., R.S. Lutz. 1993b. Nesting habitat use by Burrowing Owls in Colorado. Journal of Raptor Research. 27: 175-179.

- Plumpton, D.L., R.S. Lutz. 1993c. Influence of vehicular traffic on time budgets of nesting Burrowing Owls. Journal of Wildlife Management. 57: 612-616.
- Plumpton, D.L., R.S. Lutz. 1994. Sexual size dimorphism, mate choice, and productivity of Burrowing Owls. Auk. 111: 724-727.
- 5 Ratcliff, B.D. 1986. The Manitoba Burrowing Owl survey 1982-1984. Blue Jay. 44: 31-37.
- Rich, T. 1984. Monitoring Burrowing Owl populations: implications of burrow re-use. Wildlife
 Society Bulletin. 12: 178-180.
- Rosenberg, K.V., R.D. Ohmart, W.C. Hunter, B.W. Anderson. 1991. The birds of the lower
 Colorado River. Tucson, AZ: University of Arizona Press.
- Schultz, T.A. 1993. Observations, resightings, and encounters of rehabilitated, orphaned, and relocated burrowing owls. Journal of Raptor Research. 27:63.
- 12 Shuford, W.D., T. Gardali, eds. 2008. California Bird Species of Special Concern: A ranked
- assessment of species, subspecies, and distinct populations of birds of immediate
- 14 conservation concern in California. Studies of Western Birds No 1. Western Field
- Ornithologists, Camarillo, California, and California Department of Fish and Game,
- Sacramento.
- Thompson, C.D., S.H. Anderson. 1988. Foraging behavior and food habits of Burrowing Owls in Wyoming. Prairie Naturalist. 20: 23-28.
- Thomsen, L. 1971. Behavior and ecology of Burrowing Owls on the Oakland Municipal Airport. Condor 73:177-192.
- 21 Tyler, J.D. 1983. Notes on the Burrowing Owl food habits in Oklahoma. Southwestern
- 22 Naturalist. 28: 100-102.
- Trulio, L.A. 1997. Burrowing Owl demography and habitat use at two urban sites in Santa Clara County, California. Journal of Raptor Research Report .9: 84-89.
- 25 USFWS (U.S. Fish and Wildlife Service). 2002. Birds of Conservation Concern. U.S.
- Department of the Interior, Fish and Wildlife Service, Administrative Report, Arlington,
- 27 Virginia. http://migratorybirds.fws.gov/reports/bcc2002.pdf.
- Yolo Natural Heritage Program. 2008. Species Account: Western Burrowing Owl. Prepared by:
 Technology Associates International Corporation.
- 30 Zarn, M. 1974. Burrowing Owl (Speotyto cunicularia hypugaea). Habitat management series for
- unique or endangered species, U.S. Bureau of Land Management Technical Note 242.
- 32 Denver, CO. 25 pp.